Cumartesi, Ekim 13, 2007

Doğru Parçası Paradoksu

Önce doğru parçasının tarifini yapalım:
Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir?
Nokta: Kalemin kağıda bıraktığı en küçük iz veya belirti.Malûmdur ki noktanın boyutu yoktur. O halde dikkat. Paradoks başlıyor:

Noktanın boyutu olmadığına göre iki noktanın yanyana gelmesi birşey ifade etmez. 100 nokta veya 1 milyar nokta da yanyana geldiğinde herhangi bir şekil oluşturmaz.( Çünkü şekil oluşturması için gerekli olan boyut özelliğini sağlamıyor) Bu şuna benzer ki; sıfır ile sıfırın toplamı yine sıfırdır. Milyarlarca sıfırı toplasak 'yarım' dahi etmez. O halde doğrunun tanımında bir hata var. Çünkü sonsuz adet noktanın yanyana gelmesi birşey ifade etmez! Noktanın çok çok az da olsa boyutu olduğunu kabul etmemiz gerekir. Bu sefer de noktanın tarifi hatalı olur.

Noktayı boyutlu kabul edelim. Karşımıza bir paradoks daha çıkar; doğru parçasında sonsuz adet nokta olduğuna göre doğru parçasının da uzunluğu sonsuz olmalıdır. Çünkü çok az da olsa boyutu olan bir şeyden sonsuz adedi yanyana gelirse sonsuz uzunluk olur.

Cantor Paradoksu

George Cantor'a göre bir kümenin alt kümelerinin eleman sayısı, asıl kümeden daha fazladır. Ancak bu kaide, "Bütün kümelerin kümesi" için de geçerli midir?

"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir. Yani:

2ª Ì X (2 üzeri a, alt küme X) dir. Buradan şunu yazabiliriz:

card(2ª) kucukesit.jpg (764 bytes) card(a)................1

Çünkü alt kümelerin kardinali asıl kümelerden küçüktür veya eşittir. Ancak Cantor Teoremine göre:

card(2ª) > card(a)...................2

olmalıdır. 1 ve 2 çelişmektedir.

Bütün Sayılar Eşittir Paradoksu

a ve b birbirinden farklı herhangi iki tamsayı ve c de bunların farkı olsun:

a-b=c
(a-b)(a-b)=c.(a-b)..............................her iki tarafı (a-b) ile çarptık.
a²-2ab+b²=ac-bc...............................parantezleri açtık.
a²-2ab+b²-ac=-bc.............................ac yi sol tarafa attık.
a²-2ab-ac=-bc-b²...............................b² yi sağ tarafa attık.
a²-ab-ac=ab-bc-b².............................2ab nin birini sağ tarafa geçirdik.
a(a-b-c)=b(a-b-c)..............................a ve b parantezine aldık.
a=b....................................................(a-b-c) ler sadeleşti. (2+2=5 Paradoksunun benzeri)

Karışık bir Hesap

İki çocuk ayrı ayrı kalem satmaktadırlar. Her ikisinin de 30'ar tane kalemi vardır. Biri, 3 kalemi 10 TL'ye; diğeri de 2 kalemi 10 TL'ye vermektedir. İlki 30 kalemden 100 TL, diğeri de 150 TL kazanır. ( Toplam 250 TL.) Ertesi gün yine 30'ar kalemle evlerinden çıkarlar. Yolda karşılaştıklarında biri diğerine der ki:

-"Gel seninle ortak olalım. 60 (30+30) kalemin 5 (2+3) tanesini 20 (10+10)TL'ye satalım. Kazandığımız parayı da paylaşırız. Basit bir hesapla 60 kalemden 240 TL kazanırlar. Yani:

5 Kalem...............20 TL ise
60 Kalem..............x TL'dir. Buradan;

x=(60.20)/5= 240 TL

question.gif (8366 bytes)Çocuklar, ayrı ayrı satış yaptıklarında toplam 250 TL kazanıyorlardı. Beraber sattıklarında neden 10 TL zarar ettiler?

1 kg = 1 ton ?

1 kg = 1000 gr.............(1)
2 kg = 2000 gr.............(2)

(1) ve (2) çarpılırsa:

2 kg = 2.000.000 gr
2 kg = 2.000 kg.............(2.000.000 gr = 2.000 kg)
2 kg = 2 ton..................(2.000 kg = 2 ton). Dolayısı ile,
1 kg = 1 ton


Bu bir paradoks mudur? Hata varsa nerededir?

Hempel Paradoksu

Carl Hempel'e göre "Bütün kuzgunlar siyahtır!"

Bu önermeyi iki şekilde ispatlayabiliriz:

a) Çok sayıda kuzgun görüp, hepsinin de siyah olduğunu tesbit ederek,
b) Siyah olmayan şeylerin, aynı zamanda kuzgun da olmadığını görerek.

Bilinen şu ki çok sayıda siyah kuzgun ve yine çok sayıda siyah olmayan, aynı zamanda kuzgun da olmayan cisim vardır. Siyah olmayan tüm cisimler incelenmeden bu fikre varamayız. Kırmızı cisimler için bu uygulama yapılmamışsa "bazı kuzgunlar kırmızı " da olabilir. Bu sebeplerden Hempel paradoksu, "Tümevarım" ın itibarını sarsmıştır.

Russel Paradoksu

1970 yılında 98 yaşında ölen Bertrand RUSSEL'ın çok bilinen paradoksu:

"Bir odada papa ve ben varım. Odada kaç kişiyiz?" Cevap:
"Bir kişiyiz. Çünkü ben, aynı zamanda papayım"

Russel'ın "Kümeler" Paradoksu:

Russel'a göre iki çeşit küme var:

a) Kendisinin elemanı olan(ihtiva eden) kümeler.
b) Kendisinin elemanı olmayan kümeler.

Şimdi, "Kendisinin elemanı olmayan kümeler"in kümesine 'X' diyelim. X, kendisinin elemanı mıdır?

Berber Paradoksu

Bir berber, bulunduğu köydeki erkeklerden, yalnızca kendi kendini traş edemeyen erkekleri traş ediyor. Berberi kim traş edecek?
Kendi kendine traş olsa; kendisini traş edebildiği için tanıma ters düşecek. Başkası traş etse; o kişi kendi kendine de traş olabiliyor demektir. (bkz Russel Paradoksu)

Euplides veya Kum Yığını Paradoksu

Euplides, hiçbir zaman bir "kum yığını" oluşturulamayacağını iddia etmiştir. Çünkü bir kum tanesi, "yığın" değildir. Yanına bir tane daha koyarsak yine yığın oluşmaz. "Kum yığını" olmayan birşeyin yanına (veya üzerine) kum tanesi koymakla yığın elde edemeyeceğimize göre Hiçbir zaman "kum yığını" oluşturamayız.

Daha açık bir deyişle: Kabul edelim ki birer birer kum tanelerini biraraya getirelim. Hangi merhaleden sonra kumlar "yığın" oluşturur? Diyelim ki 'bir milyon' adet kum tanesi, bir yığın oluştursun. Dokuzyüz doksandokuzbin dokuzyüz doksandokuzu "kum yığını" kabul edilmeyecek mi? Edersek "1" eksiği de yığın olmaz mı? Yani hangi aşama bizim için "yığın" anlamına gelir?

-1 = 1 ?

Cuma, Ekim 05, 2007

İntihar Eden Rahipler...

Bir çok rahibin yaşadığı bir manastırda, ölümcül bir hastalık baş
göstermiştir. Hastalık alında beliren bir lekeyle kendini belli etmektedir.
Lakin manastırda ayna bulunmaması hastaların hasta olduklarını
öğrenebilmelerine engel olmaktadır. Ayrıca tüm rahipler çok saygılı
olduklarından hasta arkadaşlarına hasta olduklarını söylememektedirler. Her
rahip kendisi dışındaki herkesin hasta olduğunu görerek algılayabilmekte ama
kendinin kini algılayamamaktadır. Bu rahiplerin hepsi hergün üç öğün yemek için bir araya gelmekte ve herkes birbirini görebilmektedir.

Bir gün baş piskopos bir konuşma yapar:

"Arkadaşlar aramızda hasta arkadaşlar var, bunların intahar etmesini istiyorum" der.
12 gün sonra bütün hasta rahipler intihar eder.

Soru : Kaç rahip intihar etti?

Not : Bütün rahiplerin zeka seviyeleri aynıdır ve en az bir hasta rahip
vardır.

100 Katlı Binadan Küreler Atılırsa?

Elimizde 100 katlı bir bina ve birbirinin aynı 2 tane küre var.
Tek bildiğimiz bu kürelerin binanın belli bir katına kadar yüksekten
atılınca kırılmayacağı, iki kürenin sağlamlık derecesi aynı (Örneğin, bir küre
50 kata kadar yükseklikten bırakılınca kırılmıyor ve 51. katta kırılıyorsa
diğer küre de aynı şekilde...)

Bizden istenen minimum sayıda deneme ile bu kürelerin en az kaçıncı kattan atılınca kırıldığını bulmak.

İpucu: Eğer bir küremiz olsaydı teker teker bütün katları denemek zorunda
kalacaktık (1,2,3,4,...,n) burada 100 deneme gerekiyor.

Ek Soru: Üç küre olsa deneme sayısı ne olurdu?

Cevapların yüzde 99'u yanlış!